Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean

نویسندگان

  • Jinlun Zhang
  • Mike Steele
چکیده

[1] An ice-ocean model has been used to investigate the effect of vertical mixing on the circulation of the Atlantic Water layer (AL) in the Arctic Ocean. The motivation of this study comes from the disparate AL circulations in the various models that comprise the Arctic Ocean Model Intercomparison Project (AOMIP). It is found that varying vertical mixing significantly changes the ocean’s stratification by altering the vertical distribution of salinity and hence the structure of the arctic halocline. In the Eurasian Basin, the changes in ocean stratification tend to change the strength and depth of the cyclonic AL circulation, but not the basic circulation pattern. In the Canada Basin, however, the changes in ocean stratification are sufficient to alter the direction of the AL circulation. Excessively strong vertical mixing drastically weakens the ocean stratification, leading to an anticyclonic circulation at all depths, including both the AL and the upper layer that consists of the surface mixed layer and the halocline. Overly weak vertical mixing makes the ocean unrealistically stratified, with a fresher and thinner upper layer than observations. This leads to an overly strong anticyclonic circulation in the upper layer and an overly shallow depth at which the underlying cyclonic circulation occurs. By allowing intermediate vertical mixing, the model does not significantly drift away from reality and is in a rather good agreement with observations of the vertical distribution of salinity throughout the Arctic Ocean. This realistic ocean stratification leads to a realistic cyclonic AL circulation in the Canada Basin. In order for arctic ice-ocean models to obtain realistic cyclonic AL circulation in the Canada Basin, it is essential to generate an upward concave-shaped halocline across the basin at certain depths, consistent with observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Vertical Mixing on the Atlantic Water Layer Circulation in the Arctic Ocean

An ice-ocean model has been used to investigate the effect of vertical mixing on the circulation of the Atlantic Water layer (AL) in the Arctic Ocean. The motivation of this study comes from the disparate AL circulations in the various models that comprise the Arctic Ocean Model Intercomparison Project (AOMIP). It is found that varying vertical mixing significantly changes the ocean’s stratific...

متن کامل

On the dynamics of Atlantic Water circulation in the Arctic Ocean

[1] We use a subset of models from the coordinated experiment of the Arctic Ocean Model Intercomparison Project (AOMIP) to analyze differences in intensity and sense of rotation of Atlantic Water circulation. We focus on the interpretation of the potential vorticity (PV) balance. Results differ drastically for the Eurasian and the Amerasian Basins of the Arctic Ocean. We find indications that i...

متن کامل

Double-Diffusive Convection and Interleaving in the Arctic Ocean – Distribution and Importance

Beneath its ice cover the Arctic Ocean is a low energy environment. The weak turbulent activity allows other, more esoteric mixing mechanisms to become important in transforming the water masses. One such process is double-diffusive convection, which is triggered by the different molecular diffusion rates of heat and salt and utilises the potential energy stored in the unstably stratified compo...

متن کامل

Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge

High latitude ocean gateway changes are thought to play a key role in Cenozoic climate evolution. However, the underlying ocean dynamics are poorly understood. Here we use a fully coupled atmosphere-ocean model to investigate the effect of ocean gateway formation that is associated with the subsidence of the Greenland-Scotland Ridge. We find a threshold in sill depth (∼50 m) that is linked to t...

متن کامل

A model study of the first ventilated regime of the Arctic Ocean during the early Miocene

The tectonic opening of Fram Strait during the Neogene was a significant geological event that transferred the Arctic Ocean from a poorly ventilated enclosed basin, with weak exchange with the North Atlantic, to a fully ventilated ‘‘ocean stage’’. Previous tectonic and physical oceanographic analyses suggest that the early Miocene Fram Strait was likely several times narrower and less than half...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007